Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series.

نویسندگان

  • Ben DeVries
  • Arun Kumar Pratihast
  • Jan Verbesselt
  • Lammert Kooistra
  • Martin Herold
چکیده

Increasing awareness of the issue of deforestation and degradation in the tropics has resulted in efforts to monitor forest resources in tropical countries. Advances in satellite-based remote sensing and ground-based technologies have allowed for monitoring of forests with high spatial, temporal and thematic detail. Despite these advances, there is a need to engage communities in monitoring activities and include these stakeholders in national forest monitoring systems. In this study, we analyzed activity data (deforestation and forest degradation) collected by local forest experts over a 3-year period in an Afro-montane forest area in southwestern Ethiopia and corresponding Landsat Time Series (LTS). Local expert data included forest change attributes, geo-location and photo evidence recorded using mobile phones with integrated GPS and photo capabilities. We also assembled LTS using all available data from all spectral bands and a suite of additional indices and temporal metrics based on time series trajectory analysis. We predicted deforestation, degradation or stable forests using random forest models trained with data from local experts and LTS spectral-temporal metrics as model covariates. Resulting models predicted deforestation and degradation with an out of bag (OOB) error estimate of 29% overall, and 26% and 31% for the deforestation and degradation classes, respectively. By dividing the local expert data into training and operational phases corresponding to local monitoring activities, we found that forest change models improved as more local expert data were used. Finally, we produced maps of deforestation and degradation using the most important spectral bands. The results in this study represent some of the first to combine local expert based forest change data and dense LTS, demonstrating the complementary value of both continuous data streams. Our results underpin the utility of both datasets and provide a useful foundation for integrated forest monitoring systems relying on data streams from diverse sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery

Continuous monitoring of forest cover condition is key to understanding the carbon dynamics of forest ecosystems. This paper addresses how to integrate single-year airborne LiDAR and time-series Landsat imagery to derive forest cover change information. LiDAR data were used to extract forest cover at the sub-pixel level of Landsat for a single year, and the Landtrendr algorithm was applied to L...

متن کامل

Evaluation of Alternative Sensors for a “landsat-based” Monitoring Program

In Australia, Landsat imagery is currently used in a number of regional and national monitoring projects to provide maps of the extent and change in area of perennial vegetation. They provide basic information for conservation, land management and for modelling carbon flux and water use. With the looming gap in Landsat data continuity it is timely to consider the issues involved in using data f...

متن کامل

Forest Disturbance Mapping Using Dense Synthetic Landsat/MODIS Time-Series and Permutation-Based Disturbance Index Detection

Spatio-temporal information on process-based forest loss is essential for a wide range of applications. Despite remote sensing being the only feasible means of monitoring forest change at regional or greater scales, there is no retrospectively available remote sensor that meets the demand of monitoring forests with the required spatial detail and guaranteed high temporal frequency. As an altern...

متن کامل

Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring

Free and open access to the Landsat archive has enabled the implementation of national and global terrestrial monitoring projects. Herein, we summarize a project characterizing the change history of Canada’s forested ecosystems with a time series of data representing 1984–2012. Using the Composite2Change approach, we applied spectral trend analysis to annual best-available-pixel (BAP) surface r...

متن کامل

Using Intra-Annual Landsat Time Series for Attributing Forest Disturbance Agents in Central Europe

The attribution of forest disturbances to disturbance agents is a critical challenge for remote sensing-based forest monitoring, promising important insights into drivers and impacts of forest disturbances. Previous studies have used spectral-temporal metrics derived from annual Landsat time series to identify disturbance agents. Here, we extend this approach to new predictors derived from intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2016